We consider the task of inferring is-a relationships from large text corpora. For this purpose, we propose a new method combining hyperbolic embeddings and Hearst patterns. This approach allows us to set appropriate constraints for inferring concept hierarchies from distributional contexts while also being able to predict missing is-a relationships and to correct wrong extractions. Moreover -- and in contrast with other methods -- the hierarchical nature of hyperbolic space allows us to learn highly efficient representations and to improve the taxonomic consistency of the inferred hierarchies. Experimentally, we show that our approach achieves state-of-the-art performance on several commonly-used benchmarks.
翻译:我们认为,推论是一项来自大文本公司的关系。为此目的,我们提出了一种结合双曲嵌入和赫斯特模式的新方法。这种方法使我们能够为从分布环境中推论概念等级设置适当的限制,同时能够预测缺失是一种关系,并纠正错误的提取。此外,与其他方法不同,双曲空间的等级性质使我们能够了解高效的表达方式,并改进推断出等级结构的分类一致性。我们实验性地表明,我们的方法在一些常用的基准上取得了最先进的业绩。