Precise estimation of cross-correlation or similarity between two random variables lies at the heart of signal detection, hyperdimensional computing, associative memories, and neural networks. Although a vast literature exists on different methods for estimating cross-correlations, the question what is the best and simplest method to estimate cross-correlations using finite samples ? is still not clear. In this paper, we first argue that the standard empirical approach might not be the optimal method even though the estimator exhibits uniform convergence to the true cross-correlation. Instead, we show that there exists a large class of simple non-linear functions that can be used to construct cross-correlators with a higher signal-to-noise ratio (SNR). To demonstrate this, we first present a general mathematical framework using Price's Theorem that allows us to analyze cross-correlators constructed using a mixture of piece-wise linear functions. Using this framework and high-dimensional embedding, we show that some of the most promising cross-correlators are based on Huber's loss functions, margin-propagation (MP) functions, and the log-sum-exp functions.


翻译:精确估计两个随机变量之间的交叉相关性或相似性在信号检测,超维计算,联想记忆和神经网络中至关重要。尽管已经存在大量文献研究不同的方法来估计交叉相关性,但是如何使用有限样本来估计交叉相关性的最佳和最简单方法仍不清楚。在本文中,我们首先认为,即使该估计器对真实的交叉相关性表现出均匀收敛,标准经验方法也可能不是最优方法。相反,我们展示了存在一大类简单的非线性函数,可以用于构建具有更高信噪比(SNR)的交叉相关器。为了证明这一点,我们首先使用Price定理提出了一个通用的数学框架,允许我们分析使用分段线性函数混合构建的交叉相关器。利用这个框架和高维嵌入,我们表明一些最有前途的交叉相关器基于Huber的损失函数,Margin-propagation(MP)函数和对数和指数函数。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员