本文分为两个主要部分,在这两个部分之前,我们分别对时序数据的特征分析做了简要的介绍。

在第一部分中,我们研究了从非线性混合信号的观测中恢复多维源信号的经典问题。本文表明,如果混合是由于一个充分可微和可逆但其他任意的非线性函数造成的,并且源的分量信号是统计独立的,具有“非退化”的二阶统计量,则这种恢复是可能的(直到源的原始分量信号的排列和单调缩放)。后一种假设要求源信号满足三个规则条件之一,这些条件基本上确保源信号足够远离在时间上是确定的或恒定的不可恢复极端情况。这些假设涵盖了许多流行的时间序列模型和随机过程,允许我们将非线性盲源分离的初始问题重新描述为基于优化的函数逼近的简单到状态问题。本文提出通过最小化一种新的目标函数来解决这个近似问题,该目标函数通过类累积量统计有效量化了多个随机过程之间的相互统计依赖性。这产生了一个可扩展的、直接的非线性独立分量分析新方法,具有广泛适用的理论保证,实验表明该方法具有良好的性能。

在第二部分,我们从统计鲁棒性的角度重新审视盲源分离问题。盲源分离(Blind source separation, BSS)旨在从混合信号X = f (S)中恢复未知信号S,且影响变换f可逆且未知。这是一个具有许多实际应用的基本问题,一个基本问题是了解当支持统计先验假设被违反时,该问题的解决方案将如何表现。在经典的线性混合背景下,本文提出了一个通用框架来分析这种偏离,并量化它们对从x中盲恢复S的影响。在混合X的可能原因空间上引入了一种信息拓扑,并表明,可以以关于该拓扑的显式连续性保证的形式对通用BSS-解决方案响应其定义结构假设的一般偏差的行为进行有益的分析。这使得可以灵活方便地量化一般模型的不确定性场景,并构成了第一个全面的BSS鲁棒框架。该理论完全是建设性的,并用一些统计应用证明了它的有效性。 https://ora.ox.ac.uk/objects/uuid:6187ba0d-d569-4f6f-914a-fee34f282d0f

成为VIP会员查看完整内容
21

相关内容

牛津大学是一所英国研究型大学,也是罗素大学集团、英国“G5超级精英大学”,欧洲顶尖大学科英布拉集团、欧洲研究型大学联盟的核心成员。牛津大学培养了众多社会名人,包括了27位英国首相、60位诺贝尔奖得主以及数十位世界各国的皇室成员和政治领袖。2016年9月,泰晤士高等教育发布了2016-2017年度世界大学排名,其中牛津大学排名第一。

【华盛顿大学博士论文】因果模型的似然分析,190页pdf
专知会员服务
35+阅读 · 2022年11月14日
【斯坦福大学博士论文】鲁棒学习:信息论和算法,88页pdf
专知会员服务
43+阅读 · 2022年11月13日
【牛津大学博士论文】元强化学习的快速自适应,217页pdf
专知会员服务
100+阅读 · 2022年9月19日
【干货书】面向工程师的随机过程,448页pdf
专知会员服务
80+阅读 · 2021年11月3日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月2日
Arxiv
0+阅读 · 2023年3月1日
Arxiv
32+阅读 · 2021年3月8日
已删除
Arxiv
32+阅读 · 2020年3月23日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
微信扫码咨询专知VIP会员