We extend the celebrated Stone's theorem to the framework of distributional regression. More precisely, we prove that weighted empirical distribution with local probability weights satisfying the conditions of Stone's theorem provide universally consistent estimates of the conditional distributions, where the error is measured by the Wasserstein distance of order p $\ge$ 1. Furthermore, for p = 1, we determine the minimax rates of convergence on specific classes of distributions. We finally provide some applications of these results, including the estimation of conditional tail expectation or probability weighted moment.
翻译:更确切地说,我们证明加权经验分布和符合斯通理论条件的当地概率重量的当地概率重量能够提供普遍一致的有条件分布估计,其中误差由瓦森斯坦顺序的距离P$Ge$1测量。此外,对于第1页,我们确定特定分配类别的最低趋同率。我们最后提供了这些结果的一些应用,包括估计有条件尾料预期值或概率加权时间。