The aim of this paper is twofold. Based on the geometric Wasserstein tangent space, we first introduce Wasserstein steepest descent flows. These are locally absolutely continuous curves in the Wasserstein space whose tangent vectors point into a steepest descent direction of a given functional. This allows the use of Euler forward schemes instead of minimizing movement schemes introduced by Jordan, Kinderlehrer and Otto. For locally Lipschitz continuous functionals which are $\lambda$-convex along generalized geodesics, we show that there exists a unique Wasserstein steepest descent flow which coincides with the Wasserstein gradient flow. The second aim is to study Wasserstein flows of the maximum mean discrepancy with respect to certain Riesz kernels. The crucial part is hereby the treatment of the interaction energy. Although it is not $\lambda$-convex along generalized geodesics, we give analytic expressions for Wasserstein steepest descent flows of the interaction energy starting at Dirac measures. In contrast to smooth kernels, the particle may explode, i.e., a Dirac measure becomes a non-Dirac one. The computation of steepest descent flows amounts to finding equilibrium measures with external fields, which nicely links Wasserstein flows of interaction energies with potential theory. Finally, we provide numerical simulations of Wasserstein steepest descent flows of discrepancies.
翻译:本文旨在两方面展开。基于几何Wasserstein切空间,我们首先介绍了Wasserstein最陡下降流。这些是Wasserstein空间中的局部绝对连续曲线,其切向量指向给定功能的最陡下降方向。这允许使用Euler前向方案而不是由Jordan,Kinderlehrer和Otto引入的最小移动方案。针对局部Lipschitz连续的功能,它们沿广义测地线$\lambda$凸,我们展示了存在一个唯一的Wasserstein最陡下降流,该流与Wasserstein梯度流相一致。第二个目标是研究关于特定Riesz核的最大均值差异的Wasserstein流。关键部分是它与交互能量的处理。虽然它沿广义测地线不是$\lambda$凸的,但我们为从Dirac测量开始的交互能量的Wasserstein最陡下降流给出了解析表达式。与光滑核相反,粒子可能爆炸,即Dirac测量变成非Dirac测量。最陡下降流的计算相当于找到带有外部场的平衡测量,这很好地链接了交互能量的Wasserstein流与势能理论。最后,我们提供了关于差异的Wasserstein最陡下降流的数值模拟。