Chatterjee (2021) introduced a simple new rank correlation coefficient that has attracted much recent attention. The coefficient has the unusual appeal that it not only estimates a population quantity first proposed by Dette et al. (2013) that is zero if and only if the underlying pair of random variables is independent, but also is asymptotically normal under independence. This paper compares Chatterjee's new correlation coefficient to three established rank correlations that also facilitate consistent tests of independence, namely, Hoeffding's $D$, Blum-Kiefer-Rosenblatt's $R$, and Bergsma-Dassios-Yanagimoto's $\tau^*$. We contrast their computational efficiency in light of recent advances, and investigate their power against local rotation and mixture alternatives. Our main results show that Chatterjee's coefficient is unfortunately rate sub-optimal compared to $D$, $R$, and $\tau^*$. The situation is more subtle for a related earlier estimator of Dette et al. (2013). These results favor $D$, $R$, and $\tau^*$ over Chatterjee's new correlation coefficient for the purpose of testing independence.
翻译:Chatterjee (2021年) 引入了一个简单的新等级相关系数,最近引起了许多关注。该系数具有不寻常的吸引力,它不仅估算了Dette等人(2013年)首先提出的人口数量,如果而且只有在随机变量的基对子是独立的,该系数是零,而且独立时也是零态的正常的。本文将Chatterjee的新关联系数比作三个既定的等级相关系数,这有利于对独立性进行一致的测试,即Hoffding's $, Blum-Kiefer-Rosenblatt's $R, Bergsma-Dassios-Yanagimoto's $\tau $(2013年) 和 Bergsma-Dassios-Yanagimoto's $\tau $(2013年) 。我们根据最近的进展对比其计算效率,并根据当地轮换和混合物替代品调查其能力。我们的主要结果表明,Chatterjee的系数与$R$(美元)和$@tau $(美元) lautter real reality) res reality) res realtistritalitality (2013年) comportmentality) comm) commocality。这些结果有利于美元(美元,用于对美元,用于对美元和美元和美元(美元) egalticalticalitalticality agleglegleglegleglegleglegleglegal) 和美元的汇率的汇率的汇率的系数的系数的系数的汇率的系数的汇率测试。