An \textit{abstract argumentation framework} ({\sc af} for short) is a directed graph $(A,R)$ where $A$ is a set of \textit{abstract arguments} and $R\subseteq A \times A$ is the \textit{attack} relation. Let $H=(A,R)$ be an {\sc af}, $S \subseteq A$ be a set of arguments and $S^+ = \{y \mid \exists x\in S \text{ with }(x,y)\in R\}$. Then, $S$ is a \textit{stable extension} in $H$ if and only if $S^+ = A\setminus S$. In this paper, we present a thorough, formal validation of a known backtracking algorithm for listing all stable extensions in a given {\sc af}.
翻译:\ textit{ actrap 参数框架} (~c af} for short) 是一个方向图$ (A,R), 其中$A 是一套\ textit{ abtract 参数}, $R\ subseqe A\ time A$ 是 A 关系。 让$H= (A,R) 成为 a \ sc af}, $S\ subseq A$ 是一套参数, $S = mid\ exptions x\ in S\ text { with} (x,y)\ R\ $ 。 然后, $S 美元是 美元 = textitilit{ stable 扩展}, 只有 $S = A\ setminus S$, 才是美元 。 在本文中, 我们对已知的后跟踪算算算算法进行彻底的正式验证, 将所有稳定的扩展列在给定的 {sc a f} 。