This paper develops change-point methods for the spectrum of a locally stationary time series. We focus on series with a bounded spectral density that change smoothly under the null hypothesis but exhibits change-points or becomes less smooth under the alternative. We address two local problems. The first is the detection of discontinuities (or breaks) in the spectrum at unknown dates and frequencies. The second involves abrupt yet continuous changes in the spectrum over a short time period at an unknown frequency without signifying a break. Both problems can be cast into changes in the degree of smoothness of the spectral density over time. We consider estimation and minimax-optimal testing. We determine the optimal rate for the minimax distinguishable boundary, i.e., the minimum break magnitude such that we are able to uniformly control type I and type II errors. We propose a novel procedure for the estimation of the change-points based on a wild sequential top-down algorithm and show its consistency under shrinking shifts and possibly growing number of change-points. Our method can be used across many fields and a companion program is made available in popular software packages.


翻译:本文为本地固定时间序列的频谱开发了变化点方法 。 我们聚焦于在无效假设下变化顺利、但显示变化点或者在替代假设下变得不那么顺利的光谱密度的系列 。 我们处理两个本地问题 。 第一是在未知的日期和频率中检测到频谱中的不连续(或断裂) 。 第二是在未知的频率下在一个未知的频率下在短时间里突然连续改变频谱 。 两种问题都可以被抛入光谱密度随时间变化的平滑度变化中。 我们考虑估算和微型最大最佳测试。 我们决定了最小最大可区分边界的最佳速率, 即我们能够统一控制I型和II型误差的最低断裂度 。 我们提出了一个新的程序, 用于根据野生的自上而下自上而下的算法估算变化点, 并显示其在不断缩小的轮值和可能增加的变更点中的一致性。 我们的方法可以在许多领域使用, 并且一个配套的程序可以在大众软件包中提供。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年7月11日
专知会员服务
55+阅读 · 2021年6月30日
【KDD2020】多源深度域自适应的时序传感数据
专知会员服务
61+阅读 · 2020年5月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2018年11月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员