Secret sharing allows distributing a secret among several parties such that only authorized subsets, specified by an access structure, can reconstruct the secret. Sehrawat and Desmedt (COCOON 2020) introduced hidden access structures, that remain secret until some authorized subset of parties collaborate. However, their scheme assumes semi-honest parties and supports only restricted access structures. We address these shortcomings by constructing an access structure hiding verifiable secret sharing scheme that supports all monotone access structures. It is the first secret sharing scheme to support cheater identification and share verifiability in malicious-majority settings. The verification procedure of our scheme incurs no communication overhead. As the building blocks of our scheme, we introduce and construct: (i) a set-system with $> \exp\left(c\frac{2(\log h)^2}{(\log\log h)}\right)+2\exp\left(c\frac{(\log h)^2}{(\log\log h)}\right)$ subsets of a set of $h$ elements. Our set-system, $\mathcal{H}$, is defined over $\mathbb{Z}_m$, where $m$ is a non-prime-power. The size of each set in $\mathcal{H}$ is divisible by $m$ but the sizes of their pairwise intersections are not, unless one set is a subset of another, (ii) a new variant of the learning with errors (LWE) problem, called PRIM-LWE, wherein the secret matrix is sampled such that its determinant is a generator of $\mathbb{Z}_q^*$, where $q$ is the LWE modulus. The security of our scheme relies on the hardness of the LWE problem, and its share size is $$(1+ o(1)) \dfrac{2^{\ell}}{\sqrt{\pi \ell/2}}(2 q^{\varrho + 0.5} + \sqrt{q} + \mathrm{\Theta}(h)),$$ where $\varrho \leq 1$ is a constant and $\ell$ is the total number of parties. We also provide directions for future work to reduce the share size to \[\leq \dfrac{1}{3} \left( (1+ o(1)) \dfrac{2^{\ell}}{\sqrt{\pi \ell/2}}(2 q^{\varrho + 0.5} + 2\sqrt{q}) \right).\]


翻译:秘密共享允许在多个政党中分配一个秘密, 这样只能由访问结构指定的授权的子集, 才能重建这个秘密 。 [ Sehrawat 和 Desmedt (COON 2020) 引入了隐藏的访问结构, 直至某些被授权的政党子集合作。 但是, 他们的计划假设是半富裕的政党, 并且只支持限制的访问结构 。 我们通过构建一个隐藏可核实的秘密共享机制来解决这些缺陷, 支持所有单调访问结构 。 这是第一个支持欺骗者身份的保密共享方案, 并在恶意偏差设置中共享 。 我们计划的核查程序没有通信管理 。 作为我们计划的构建区块, 我们引入和构建了:(i) 一个固定系统 $\\ fleft (c\\\\ h2( h)\\\\\\\ h)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月12日
Feature Engineering with Regularity Structures
Arxiv
0+阅读 · 2021年8月12日
On the Explanatory Power of Decision Trees
Arxiv
0+阅读 · 2021年8月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员