We consider a space structured population model generated by two point clouds: a homogeneous Poisson process $M$ with intensity $n\to\infty$ as a model for a parent generation together with a Cox point process $N$ as offspring generation, with conditional intensity given by the convolution of $M$ with a scaled dispersal density $\sigma^{-1}f(\cdot/\sigma)$. Based on a realisation of $M$ and $N$, we study the nonparametric estimation of $f$ and the estimation of the physical scale parameter $\sigma>0$ simultaneously for all regimes $\sigma=\sigma_n$. We establish that the optimal rates of convergence do not depend monotonously on the scale and we construct minimax estimators accordingly whether $\sigma$ is known or considered as a nuisance, in which case we can estimate it and achieve asymptotic minimaxity by plug-in. The statistical reconstruction exhibits a competition between a direct and a deconvolution problem. Our study reveals in particular the existence of a least favourable intermediate inference scale, a phenomenon that seems to be new.


翻译:我们考虑由两点云形成的空间结构人口模型:单质Poisson进程,以美元为单位,以美元为单位,以美元为单位,作为父母一代的模型,同时以Cox点进程为单位,以美元为单位,以子孙生成,以美元为单位,以美元为单位,以美元计算,以美元为单位,以美元为单位,以美元为单位计算空间结构人口模型;在达到美元和美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位,以美元为单位计算,以美元为单位计算,以美元为单位计算,以美元为单位为单位,以美元为单位计算,以美元为单位计算,以美元为单位为单位计算,以美元为单位,以美元为单位,以美元为单位计算,以美元为单位计算,以美元为单位计算,以美元为单位计算,以美元为单位计算,以美元为单位计算,以美元为单位计算,以美元计算,以美元为单位计算,以美元计算,以美元计算,以美元计算,以美元为单位计算,以美元为单位计算,以美元计算,以美元计算,计算,以美元为单位计算,以美元为单位计算,以美元为单位计算,以美元为单位计算,以美元为单位计算,以美元为单位计算,以美元为单位计算,以美元为单位计算,以美元计算,以美元计算,以美元计算,计算,以美元计算,以美元计算,以美元计算,以美元计算,以美元计算,以美元计算,以美元计算,以美元计算,以美元计算,以美元计算,以美元计算,以美元计算,以美元计算,计算,计算,计算,计算,

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月21日
Arxiv
0+阅读 · 2022年12月21日
Optimal Individualized Decision-Making with Proxies
Arxiv
0+阅读 · 2022年12月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员