This paper illustrates the benefits of sampling intraday returns in intrinsic time for the estimation of integrated variance through the realized variance (RV) estimator. The intrinsic time transforms the clock time in accordance with the market's activity, which we measure by trading intensity (transaction time) or spot variance (business time). We theoretically show that the RV estimator is unbiased for all sampling schemes, but most efficient under business time, also under independent market microstructure noise. Our analysis builds on the flexible assumption that asset prices follow a diffusion process that is time-changed with a doubly stochastic Poisson process. This provides a flexible stochastic model for the prices together with their transaction times that allows for separate and stochastically varying trading intensity and tick variance processes that jointly govern the spot variance. These separate model components are particularly advantageous over e.g., standard diffusion models, as they allow to exploit and disentangle the effects of the two different sources of intraday information on the theoretical properties of RV. Extensive simulations confirm our theoretical results and show that business time remains superior under different noise specifications and for noise-corrected RV estimators. An empirical application to stock data provides further evidence for the benefits of using intrinsic sampling to get efficient RV estimators.


翻译:本文说明了通过已实现差异(RV)估计综合差异的内在时间对内日内回报进行抽样评估的好处。内含时间根据市场活动变化时钟时间,我们通过交易强度(交易时间)或点差异(商业时间)加以衡量。我们理论上表明,对于所有抽样计划而言,RV估计值是不偏不倚的,但在商业时期也是在独立的市场微观结构噪音下也是最有效率的。我们的分析基于一种灵活假设,即资产价格的传播过程经过时间的改变,同时有一个加倍的随机随机化 Poisson过程。这为价格及其交易时间提供了一个灵活的随机化模型,使得交易强度和时间与交易时间相适应,从而可以单独和随机化地变化,共同管理点差异。从理论上看,这些不同的模型组成部分特别有利于所有抽样计划,例如标准传播模型能够利用和分解两个不同来源对RV的理论特性的影响。广泛的模拟证实了我们的理论结果,并表明,在不同的噪音规格下,业务时间仍然优于不同的噪音规格之下,并且能够用不断变化的测测算数据,从而进一步将测测测为RVsestsestal 数据应用。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月22日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员