We consider the problem of inference for non-stationary time series with heavy-tailed error distribution. Under a time-varying linear process framework we show that there exists a suitable local approximation by a stationary process with heavy-tails. This enable us to introduce a local approximation-based estimator which estimates consistently time-varying parameters of the model at hand. To develop a robust method, we also suggest a self-weighing scheme which is shown to recover the asymptotic normality of the estimator regardless of whether the finite variance of the underlying process exists. Empirical evidence favoring this approach is provided.
翻译:我们考虑的是非静止时间序列的推论问题,该序列的误差分布过大。在时间变化线性进程框架下,我们发现存在一个适合本地的近似值,通过一个具有重尾的固定过程。这使我们能够引入一个以近似为基础的估算器,该估算器对当前模型的时间变化参数进行一致的估计。为了开发一个稳健的方法,我们还提出一个自我比重计划,显示它能够恢复估测器的无足轻重的正常状态,而不管是否存在基本过程的有限差异。提供了支持这一方法的经验证据。