Confidence-aware learning is proven as an effective solution to prevent networks becoming overconfident. We present a confidence-aware camouflaged object detection framework using dynamic supervision to produce both accurate camouflage map and meaningful "confidence" representing model awareness about the current prediction. A camouflaged object detection network is designed to produce our camouflage prediction. Then, we concatenate it with the input image and feed it to the confidence estimation network to produce an one channel confidence map.We generate dynamic supervision for the confidence estimation network, representing the agreement of camouflage prediction with the ground truth camouflage map. With the produced confidence map, we introduce confidence-aware learning with the confidence map as guidance to pay more attention to the hard/low-confidence pixels in the loss function. We claim that, once trained, our confidence estimation network can evaluate pixel-wise accuracy of the prediction without relying on the ground truth camouflage map. Extensive results on four camouflaged object detection testing datasets illustrate the superior performance of the proposed model in explaining the camouflage prediction.
翻译:信心学习被证明是防止网络过于自信的有效解决办法。 我们展示了一个有自信的隐蔽物探测框架, 使用动态监督制制成准确的迷彩图和代表对当前预测的模型意识的有意义的“信心” 。 伪装物探测网络的设计是为了产生我们的伪装预测。 然后, 我们把它与输入图像混为一体, 并将它与信任估计网络相配, 以产生单一的频道信任图。 我们为信任估计网络提供动态监督, 代表着与地面真相迷彩图的迷彩预测协议。 我们制作了信任地图, 引入了有信心的地图, 指导人们更多地关注损失函数中的硬/低信心像素。 我们声称, 一旦经过培训, 我们的信任估计网络就可以在不依靠地面真相迷彩图的情况下评估预测的像素准确性。 四个受迷惑物探测测试数据集的广泛结果显示了拟议模型在解释迷彩预测方面的优异性表现。