Early action prediction aims to successfully predict the class label of an action before it is completely performed. This is a challenging task because the beginning stages of different actions can be very similar, with only minor subtle differences for discrimination. In this paper, we propose a novel Expert Retrieval and Assembly (ERA) module that retrieves and assembles a set of experts most specialized at using discriminative subtle differences, to distinguish an input sample from other highly similar samples. To encourage our model to effectively use subtle differences for early action prediction, we push experts to discriminate exclusively between samples that are highly similar, forcing these experts to learn to use subtle differences that exist between those samples. Additionally, we design an effective Expert Learning Rate Optimization method that balances the experts' optimization and leads to better performance. We evaluate our ERA module on four public action datasets and achieve state-of-the-art performance.
翻译:早期行动预测旨在成功预测一项行动在完全实施之前的分类标签。 这是一项具有挑战性的任务, 因为不同行动的起始阶段可能非常相似, 只有细微的差别。 在本文中, 我们提出一个新的专家检索和组装( ERA) 模块, 检索和组装一组最擅长使用歧视微妙差异的专家, 以区分输入样本与其他高度相似样本。 为了鼓励我们的模型有效地使用微妙的差别来进行早期行动预测, 我们迫使专家对非常相似的样本进行区分, 迫使这些专家学习使用这些样本之间存在的微妙差别。 此外, 我们设计了一种有效的专家学习率优化方法, 平衡专家的优化, 并导致更好的表现。 我们用四个公共行动数据集来评估我们的 ERA 模块, 并实现最先进的性能 。