This paper presents a new large multiview dataset called HUMBI for human body expressions with natural clothing. The goal of HUMBI is to facilitate modeling view-specific appearance and geometry of five primary body signals including gaze, face, hand, body, and garment from assorted people. 107 synchronized HD cameras are used to capture 772 distinctive subjects across gender, ethnicity, age, and style. With the multiview image streams, we reconstruct high fidelity body expressions using 3D mesh models, which allows representing view-specific appearance. We demonstrate that HUMBI is highly effective in learning and reconstructing a complete human model and is complementary to the existing datasets of human body expressions with limited views and subjects such as MPII-Gaze, Multi-PIE, Human3.6M, and Panoptic Studio datasets. Based on HUMBI, we formulate a new benchmark challenge of a pose-guided appearance rendering task that aims to substantially extend photorealism in modeling diverse human expressions in 3D, which is the key enabling factor of authentic social tele-presence. HUMBI is publicly available at http://humbi-data.net
翻译:本文展示了一个新的大型多视图数据集,称为HUMBI,用于自然衣着的人体表达。 HUMBI的目标是便利对五种主要身体信号(包括凝视、面部、手部、身体和衣物)进行视觉特有外观和几何的模拟。 107个同步的HD照相机用于捕捉性别、种族、年龄和风格各异的772个不同主题。 在多视图图像流中,我们用3D网格模型重建高度忠诚的体形表达,这可以代表特定视觉的外观。 我们证明HUMBI在学习和重建完整的人类模型方面非常有效,并且补充了现有有有限观点和主题的人体表达的数据集,如MPII-Gaze、多PIE、Human3.6M和Panopic Studio数据集。 我们根据HUMBI, 设计了一种假制外观的新的基准挑战,目的是在3D中大量扩展模拟各种人类表达方式的光度,这是真实社会电信特征的关键促进因素。 HUMBI在 http://mumb-data上可以公开查阅 。