For multilayer structures, interfacial failure is one of the most important elements related to device reliability. For cohesive zone modelling, traction-separation relations represent the adhesive interactions across interfaces. However, existing theoretical models do not currently capture traction-separation relations that have been extracted using direct methods, particularly under mixed-mode conditions. Given the complexity of the problem, models derived from the neural network approach are attractive. Although they can be trained to fit data along the loading paths taken in a particular set of mixed-mode fracture experiments, they may fail to obey physical laws for paths not covered by the training data sets. In this paper, a thermodynamically consistent neural network (TCNN) approach is established to model the constitutive behavior of interfaces when faced with sparse training data sets. Accordingly, three conditions are examined and implemented here: (i) thermodynamic consistency, (ii) maximum energy dissipation path control and (iii) J-integral conservation. These conditions are treated as constraints and are implemented as such in the loss function. The feasibility of this approach is demonstrated by comparing the modeling results with a range of physical constraints. Moreover, a Bayesian optimization algorithm is then adopted to optimize the weight factors associated with each of the constraints in order to overcome convergence issues that can arise when multiple constraints are present. The resultant numerical implementation of the ideas presented here produced well-behaved, mixed-mode traction separation surfaces that maintained the fidelity of the experimental data that was provided as input. The proposed approach heralds a new autonomous, point-to-point constitutive modeling concept for interface mechanics.


翻译:对于多层结构而言,跨层故障是与装置可靠性有关的最重要的要素之一。对于具有凝聚力的区域建模而言,牵离分离关系代表着跨界面的粘合互动。然而,现有的理论模型目前并不捕捉使用直接方法,特别是在混合模式条件下,提取的牵离分离关系。鉴于问题的复杂性,神经网络方法产生的模型具有吸引力。尽管可以训练它们将数据与在一组混合模式断裂实验中采用的装货路径相适应,但它们可能不遵守培训数据集所没有覆盖的路径的物理法则。在本文件中,建立了热动力一致的神经网络(TCNNN)方法,以模拟在面临零散的培训数据集时,界面的构造-分离关系。因此,在这里对三个条件进行审查和实施:(一) 热力一致性,(二) 最大能量分解路径控制,以及(三) J-分解保存。这些条件被视为制约,并在损失功能中执行。这一方法的可行性表现在将当前精良性电离层的神经网络(TCNNN)概念与各种物理制约的模型下,可以将模型与当前压的精度的精度进行对比。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Top
微信扫码咨询专知VIP会员