Typical engineering design tasks require the effort to modify designs iteratively until they meet certain constraints, i.e., performance or attribute requirements. Past work has proposed ways to solve the inverse design problem, where desired designs are directly generated from specified requirements, thus avoid the trial and error process. Among those approaches, the conditional deep generative model shows great potential since 1) it works for complex high-dimensional designs and 2) it can generate multiple alternative designs given any condition. In this work, we propose a conditional deep generative model, Range-GAN, to achieve automatic design synthesis subject to range constraints. The proposed model addresses the sparse conditioning issue in data-driven inverse design problems by introducing a label-aware self-augmentation approach. We also propose a new uniformity loss to ensure generated designs evenly cover the given requirement range. Through a real-world example of constrained 3D shape generation, we show that the label-aware self-augmentation leads to an average improvement of 14% on the constraint satisfaction for generated 3D shapes, and the uniformity loss leads to a 125% average increase on the uniformity of generated shapes' attributes. This work laid the foundation for data-driven inverse design problems where we consider range constraints and there are sparse regions in the condition space.
翻译:通常的工程设计任务需要努力迭接地修改设计,直到设计达到某些限制,即性能或属性要求; 过去的工作提出了解决逆向设计问题的方法,在理想的设计直接由特定要求产生的情况下,可以避免试验和错误过程; 在这些方法中,有条件的深深基因模型显示出巨大的潜力,因为1,它用于复杂的高维设计,2,它可以产生具有任何条件的多种替代设计。在这项工作中,我们提出了一个条件性深深深深的基因模型,即Meare-GAN,以在范围限制下实现自动设计合成。提议的模型通过采用标签意识自我增强方法解决数据驱动反向设计问题中的稀释调节问题。我们还提出了新的统一性损失,以确保生成的设计均衡地覆盖给定的需求范围。通过一个限制3D形状生成的现实世界实例,我们表明,自觉作用使生成的3D形状的制约性满意度平均提高14%,而统一性损失导致生成形状特性一致性平均增加125%。我们的工作基础是数据驱动力设计区域的脆弱性。