Disentanglement is defined as the problem of learninga representation that can separate the distinct, informativefactors of variations of data. Learning such a representa-tion may be critical for developing explainable and human-controllable Deep Generative Models (DGMs) in artificialintelligence. However, disentanglement in GANs is not a triv-ial task, as the absence of sample likelihood and posteriorinference for latent variables seems to prohibit the forwardstep. Inspired by contrastive learning (CL), this paper, froma new perspective, proposes contrastive disentanglement ingenerative adversarial networks (CD-GAN). It aims at dis-entangling the factors of inter-class variation of visual datathrough contrasting image features, since the same factorvalues produce images in the same class. More importantly,we probe a novel way to make use of limited amount ofsupervision to the largest extent, to promote inter-class dis-entanglement performance. Extensive experimental resultson many well-known datasets demonstrate the efficacy ofCD-GAN for disentangling inter-class variation.
翻译:分解被定义为可以区分数据差异的不同、信息因素的学习代表问题。学习这种代表对于在人工智能中开发可解释和人可控制的深发模型(DGMs)可能至关重要。然而,在GANs中解脱并不是一项三重任务,因为没有样本的可能性和潜在变量的外貌似乎禁止向前步骤。受对比性学习(CL)的启发,本文从新的角度提出了对比性解析性遗传对立网络(CD-GAN)的建议。它的目的是通过对比性图像特征去勾画视觉数据的跨类变异因素,因为同一要素值产生同一类的图像。更重要的是,我们探索一种新方式,将有限的超视量用于最大程度上,促进跨类解脱钩性性性能。许多众所周知的数据数据集的广泛实验结果显示CD-GAN的功效,可以消除类间变异性。