Graph-based clustering plays an important role in the clustering area. Recent studies about graph convolution neural networks have achieved impressive success on graph type data. However, in general clustering tasks, the graph structure of data does not exist such that the strategy to construct a graph is crucial for performance. Therefore, how to extend graph convolution networks into general clustering tasks is an attractive problem. In this paper, we propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs. The adaptive process is designed to induce the model to exploit the high-level information behind data and utilize the non-Euclidean structure sufficiently. We further design a novel mechanism with rigorous analysis to avoid the collapse caused by the adaptive construction. Via combining the generative model for network embedding and graph-based clustering, a graph auto-encoder with a novel decoder is developed such that it performs well in weighted graph used scenarios. Extensive experiments prove the superiority of our model.


翻译:基于图形的集群在组群领域起着重要作用。 最近关于图形共变神经网络的研究在图形类型数据上取得了令人印象深刻的成功。 但是,在一般组群任务中,数据图表结构并不存在,因此,构建图形的战略对于性能来说至关重要。因此,如何将图形共变网络扩展为一般组群任务是一个有吸引力的问题。在本文中,我们提议为一般数据组群建立一个图形自动编码器,该组群根据图形的遗传视角,以适应的方式构建图形。适应过程旨在引导模型利用数据背后的高层次信息,并充分利用非欧洲域域图结构。我们进一步设计了一个具有严格分析的新机制,以避免因适应性构建而导致的崩溃。Via将网络嵌入和基于图形的集群的基因化模型结合起来,一个图形自动编码器与新的解码器一起开发,使其在加权图形使用的假设情景中运行良好。广泛的实验证明了我们模型的优越性。

0
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
3+阅读 · 2018年2月11日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关VIP内容
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员