Markov Chain Monte Carlo methods for sampling from complex distributions and estimating normalization constants often simulate samples from a sequence of intermediate distributions along an annealing path, which bridges between a tractable initial distribution and a target density of interest. Prior work has constructed annealing paths using quasi-arithmetic means, and interpreted the resulting intermediate densities as minimizing an expected divergence to the endpoints. We provide a comprehensive analysis of this 'centroid' property using Bregman divergences under a monotonic embedding of the density function, thereby associating common divergences such as Amari's and Renyi's ${\alpha}$-divergences, ${(\alpha,\beta)}$-divergences, and the Jensen-Shannon divergence with intermediate densities along an annealing path. Our analysis highlights the interplay between parametric families, quasi-arithmetic means, and divergence functions using the rho-tau Bregman divergence framework of Zhang 2004;2013.
翻译:Markov 链条蒙特卡洛(Markov Channel Monte Carlo)从复杂的分布区进行取样并估计正常化常数的方法,常常模拟从一个脉冲路径上一系列中间分布的样本,该脉冲连接到可移动的初步分布和感兴趣的目标密度之间。先前的工作已经使用准振动手段建造了脉冲路径,并将由此形成的中间密度解释为最大限度地缩小到预期的终点差异。我们用密度函数单体嵌入的布列格曼差异对这一“中心”属性进行了全面分析,从而将诸如Amari's和Renyi's $-alpha}-diverences、${(alpha,\beta)}$-diverences和Jensen-Shanneln 差异和一条脉冲路径上的中间密度差异联系起来。我们的分析强调了参数组、准振动手段和差异函数之间的相互作用,并使用Zhang 2004-2013的rho-to Bregman差异框架。