Let $L$ be a finite lattice and $\mathcal{E}(L)$ be the set of join endomorphisms of $L$. We consider the problem of given $L$ and $f,g \in \mathcal{E}(L)$, finding the greatest lower bound $f \sqcap_{{\scriptsize \mathcal{E}(L)}} g$ in the lattice $\mathcal{E}(L)$. (1) We show that if $L$ is distributive, the problem can be solved in time $O(n)$ where $n=| L |$. The previous upper bound was $O(n^2)$. (2) We provide new algorithms for arbitrary lattices and give experimental evidence that they are significantly faster than the existing algorithm. (3) We characterize the standard notion of distributed knowledge of a group as the greatest lower bound of the join-endomorphisms representing the knowledge of each member of the group. (4) We show that deciding whether an agent has the distributed knowledge of two other agents can be computed in time $O(n^2)$ where $n$ is the size of the underlying set of states. (5) For the special case of $S5$ knowledge, we show that it can be decided in time $O(n\alpha_{n})$ where $\alpha_{n}$ is the inverse of the Ackermann function.


翻译:(L) $ g$ (L) 是一个固定的缩放和 $mathcal{E} (L) 。 (L) 显示, 如果美元是分配的, 问题可以用美元(n) 美元解决。 我们考虑给付美元和美元(f) 和美元(g) 的问题。 我们为任意的缩放提供新的算法, 并提供实验性证据, 表明它们比现有的算法要快得多 。 (L) 我们把一个组的传播知识的标准概念描述为代表每个组成员知识的组合-变换学的最大约束。 (4) 我们显示, 确定一个代理人是否用美元(n) 美元(n) 美元(n) 解决了问题。 上一个上一个上限是 $(n) 美元(n) 。 (n) 具体时间(n) 显示它的两个代理人的知识是美元(美元) 。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月8日
Arxiv
0+阅读 · 2022年12月8日
Arxiv
0+阅读 · 2022年12月7日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员