Let $L$ be a finite lattice and $\mathcal{E}(L)$ be the set of join endomorphisms of $L$. We consider the problem of given $L$ and $f,g \in \mathcal{E}(L)$, finding the greatest lower bound $f \sqcap_{{\scriptsize \mathcal{E}(L)}} g$ in the lattice $\mathcal{E}(L)$. (1) We show that if $L$ is distributive, the problem can be solved in time $O(n)$ where $n=| L |$. The previous upper bound was $O(n^2)$. (2) We provide new algorithms for arbitrary lattices and give experimental evidence that they are significantly faster than the existing algorithm. (3) We characterize the standard notion of distributed knowledge of a group as the greatest lower bound of the join-endomorphisms representing the knowledge of each member of the group. (4) We show that deciding whether an agent has the distributed knowledge of two other agents can be computed in time $O(n^2)$ where $n$ is the size of the underlying set of states. (5) For the special case of $S5$ knowledge, we show that it can be decided in time $O(n\alpha_{n})$ where $\alpha_{n}$ is the inverse of the Ackermann function.
翻译:(L) $ g$ (L) 是一个固定的缩放和 $mathcal{E} (L) 。 (L) 显示, 如果美元是分配的, 问题可以用美元(n) 美元解决。 我们考虑给付美元和美元(f) 和美元(g) 的问题。 我们为任意的缩放提供新的算法, 并提供实验性证据, 表明它们比现有的算法要快得多 。 (L) 我们把一个组的传播知识的标准概念描述为代表每个组成员知识的组合-变换学的最大约束。 (4) 我们显示, 确定一个代理人是否用美元(n) 美元(n) 美元(n) 解决了问题。 上一个上一个上限是 $(n) 美元(n) 。 (n) 具体时间(n) 显示它的两个代理人的知识是美元(美元) 。