Modeling many-body systems has been a long-standing challenge in science, from classical and quantum physics to computational biology. Equivariance is a critical physical symmetry for many-body dynamic systems, which enables robust and accurate prediction under arbitrary reference transformations. In light of this, great efforts have been put on encoding this symmetry into deep neural networks, which significantly boosts the prediction performance of down-streaming tasks. Some general equivariant models which are computationally efficient have been proposed, however, these models have no guarantee on the approximation power and may have information loss. In this paper, we leverage insights from the scalarization technique in differential geometry to model many-body systems by learning the gradient vector fields, which are SE(3) and permutation equivariant. Specifically, we propose the Equivariant Vector Field Network (EVFN), which is built on a novel tuple of equivariant basis and the associated scalarization and vectorization layers. Since our tuple equivariant basis forms a complete basis, learning the dynamics with our EVFN has no information loss and no tensor operations are involved before the final vectorization, which reduces the complex optimization on tensors to a minimum. We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data, as well as the equilibrium state of small molecules (molecular conformation) evolving as a statistical mechanics system. Experimental results across multiple tasks demonstrate that our model achieves best or competitive performance on baseline models in various types of datasets.


翻译:从古典和量子物理到计算生物学,许多体系的模拟系统一直是科学方面的长期挑战,从古典和量物理到计算生物学,常识是许多体系动态系统的关键物理对称。对于许多体系动态系统来说,常识是一种关键的物理对称,在任意的参考转换下,能够进行稳健和准确的预测。有鉴于此,在将这种对称编码入深神经网络方面已经做出了巨大努力,这极大地提高了下游任务的预测性能。然而,已经提出了一些计算效率的一般等异模型,但这些模型无法保证近似动力,并可能存在信息损失。在本文件中,我们通过学习梯度矢量矢量矢量矢量矢量矢量矢量矢量向多机系的升级技术,我们通过学习梯度矢量矢量矢量矢量矢量矢量向字段(即SEE(3)和变量变量变量变量变量变量变量变量变量变量变量变量变量变数),将不同体变量变量模型的精度法化技术的洞察到模型,从而完全地基化。我们对量变量变量变量变量变量变数的变数的变量变数的变数的计算,我们的数据系统,没有精确性变数的精度的精确性变数的精确性反应,在精确的精确度上,在变数的模型的精确度上,在最后的精确度上,我们的模型上,我们的变量变量变量变数的精确度上进行中,我们的变数的变数的变数的精确度变数的计算方法中,,在的精确度上,在的模型中,我们的变数的精确度上进行中,我们的变数的变数的变数的变数的变数的变数的系统的精确算, 的计算系统是在精确的变数的系统上,我们的变数的变数的变数的变数的变数的变数的变数的变数的变数的变数的变数的变数的变数的变数中,我们的变数的变数的变数的变数的变数的变数制的变数的变数制, 和变数的变数的变数的

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
百倍提升张量计算:谷歌开源TensorNetwork
机器之心
3+阅读 · 2019年6月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
8+阅读 · 2021年2月19日
Hyperbolic Graph Attention Network
Arxiv
6+阅读 · 2019年12月6日
dynnode2vec: Scalable Dynamic Network Embedding
Arxiv
14+阅读 · 2018年12月6日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
百倍提升张量计算:谷歌开源TensorNetwork
机器之心
3+阅读 · 2019年6月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员