A recent line of work showed that various forms of convolutional kernel methods can be competitive with standard supervised deep convolutional networks on datasets like CIFAR-10, obtaining accuracies in the range of 87-90% while being more amenable to theoretical analysis. In this work, we highlight the importance of a data-dependent feature extraction step that is key to the obtain good performance in convolutional kernel methods. This step typically corresponds to a whitened dictionary of patches, and gives rise to a data-driven convolutional kernel methods. We extensively study its effect, demonstrating it is the key ingredient for high performance of these methods. Specifically, we show that one of the simplest instances of such kernel methods, based on a single layer of image patches followed by a linear classifier is already obtaining classification accuracies on CIFAR-10 in the same range as previous more sophisticated convolutional kernel methods. We scale this method to the challenging ImageNet dataset, showing such a simple approach can exceed all existing non-learned representation methods. This is a new baseline for object recognition without representation learning methods, that initiates the investigation of convolutional kernel models on ImageNet. We conduct experiments to analyze the dictionary that we used, our ablations showing they exhibit low-dimensional properties.


翻译:最近一行工作表明,各种形式的革命内核方法可以与诸如CIFAR-10等标准、受监督的关于数据集的深层革命网络竞争,获得87-90%的精密度,同时更容易进行理论分析。在这项工作中,我们强调数据依赖特征提取步骤的重要性,这是在共生内核方法中取得良好性能的关键。这一步骤通常与白化的补丁字典相对应,并产生一种数据驱动的内核方法。我们广泛研究其效果,证明它是这些方法高性能的关键成分。具体地说,我们显示,基于单一一层图像补丁,这种内核方法的最简单的例子之一,已经获得CIRF-10的分类,与先前更复杂的革命内核方法相同。我们将这种方法推广到具有挑战性的图像网络数据集,显示这种简单的方法可以超越所有现有的非学习方法。这是在不进行展示性能识别对象方面,而没有展示这些方法的关键要素的关键要素。具体地说,我们显示,基于线性分类师所遵循的单一层图像补补补补补补,正在进行我们所进行低式的图像的模型。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
学习自然语言处理路线图
专知会员服务
137+阅读 · 2019年9月24日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
VIP会员
相关VIP内容
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员