Machine learning (ML) can help fight the COVID-19 pandemic by enabling rapid screening of large volumes of chest X-ray images. To perform such data analysis while maintaining patient privacy, we create ML models that satisfy Differential Privacy (DP). Previous works exploring private COVID-19 ML models are in part based on small or skewed datasets, are lacking in their privacy guarantees, and do not investigate practical privacy. In this work, we therefore suggest several improvements to address these open gaps. We account for inherent class imbalances in the data and evaluate the utility-privacy trade-off more extensively and over stricter privacy budgets than in previous work. Our evaluation is supported by empirically estimating practical privacy leakage through actual attacks. Based on theory, the introduced DP should help limit and mitigate information leakage threats posed by black-box Membership Inference Attacks (MIAs). Our practical privacy analysis is the first to test this hypothesis on the COVID-19 detection task. In addition, we also re-examine the evaluation on the MNIST database. Our results indicate that based on the task-dependent threat from MIAs, DP does not always improve practical privacy, which we show on the COVID-19 task. The results further suggest that with increasing DP guarantees, empirical privacy leakage reaches an early plateau and DP therefore appears to have a limited impact on MIA defense. Our findings identify possibilities for better utility-privacy trade-offs, and we thus believe that empirical attack-specific privacy estimation can play a vital role in tuning for practical privacy.


翻译:机器学习(ML)有助于通过快速筛选大量胸前X光图像来消除COVID-19大流行。为了在保持患者隐私的同时进行这类数据分析,我们创建了满足不同隐私(DP)的ML模型。以前对私人COVID-19 ML模型的探索,部分基于小型或偏斜的数据集,缺乏隐私保障,不调查实际隐私。因此,我们建议通过改进一些办法解决这些公开差距。我们考虑到数据中固有的阶级不平衡,并比以往的工作更广泛和地评估通用隐私预算的过度交易。我们的评估得到实证性地估计实际隐私渗漏的模型的支持。根据理论,引入的DP应有助于限制和减轻黑箱成员“推断攻击”所构成的信息泄漏威胁。我们的实际隐私分析是第一个检验COVI-19探测任务的假设。此外,我们还可以重新审视对MNIST数据库的评估。我们的结果显示,基于MIA任务依赖的任务威胁,DP并不总能通过实际的隐私评估来改善实际隐私,因此,我们似乎能够改善实际的隐私,而实际的保密性地显示,因此,我们更相信CVILA的国防评估。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Verifiable Differential Privacy
Arxiv
0+阅读 · 2023年1月20日
Arxiv
0+阅读 · 2023年1月19日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员