Optional type annotations allow for enriching dynamic programming languages with static typing features like better Integrated Development Environment (IDE) support, more precise program analysis, and early detection and prevention of type-related runtime errors. Machine learning-based type inference promises interesting results for automating this task. However, the practical usage of such systems depends on their ability to generalize across different domains, as they are often applied outside their training domain. In this work, we investigate Type4Py as a representative of state-of-the-art deep learning-based type inference systems, by conducting extensive cross-domain experiments. Thereby, we address the following problems: class imbalances, out-of-vocabulary words, dataset shifts, and unknown classes. To perform such experiments, we use the datasets ManyTypes4Py and CrossDomainTypes4Py. The latter we introduce in this paper. Our dataset enables the evaluation of type inference systems in different domains of software projects and has over 1,000,000 type annotations mined on the platforms GitHub and Libraries. It consists of data from the two domains web development and scientific calculation. Through our experiments, we detect that the shifts in the dataset and the long-tailed distribution with many rare and unknown data types decrease the performance of the deep learning-based type inference system drastically. In this context, we test unsupervised domain adaptation methods and fine-tuning to overcome these issues. Moreover, we investigate the impact of out-of-vocabulary words.


翻译:选择类型说明可以丰富动态编程语言,使其具有静态打字功能,如更好的综合开发环境(IDE)支持、更精确的程序分析,以及早期发现和预防与类型相关的运行错误。机器学习型推论为这项任务的自动化带来了有趣的结果。然而,这些系统的实际使用取决于它们是否有能力在不同的领域加以推广,因为这些系统往往在培训领域之外应用。在这项工作中,我们调查4Py,作为最先进的深层次学习型推理系统的代表,通过进行广泛的跨度实验。因此,我们处理以下问题:阶级不平衡、校外词汇、数据集变化和未知的类别。为了进行这种实验,我们使用数据集的多功能4Py和CrosmamainType4Py。我们在此文件中介绍。我们的数据集能够评估不同软件项目领域的类型推理系统,并在GitHub和图书馆的平台上收集了1 000 000多种类型的图解。我们从两个域域的网络发展和科学领域变换数据,我们从这些细的系统到深层次的模型,我们从深度的变变的模型中,我们用这些模型来测量和深层次的数据类型,我们用来测量和深层次的模型的模型的模型的模型的模型的模型,我们去。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月9日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
13+阅读 · 2022年1月20日
Arxiv
13+阅读 · 2021年3月29日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
0+阅读 · 2023年3月9日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
13+阅读 · 2022年1月20日
Arxiv
13+阅读 · 2021年3月29日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
110+阅读 · 2020年2月5日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员