We present a novel method for learning hybrid force/position control from demonstration. We learn a dynamic constraint frame aligned to the direction of desired force using Cartesian Dynamic Movement Primitives. In contrast to approaches that utilize a fixed constraint frame, our approach easily accommodates tasks with rapidly changing task constraints over time. We activate only one degree of freedom for force control at any given time, ensuring motion is always possible orthogonal to the direction of desired force. Since we utilize demonstrated forces to learn the constraint frame, we are able to compensate for forces not detected by methods that learn only from demonstrated kinematic motion, such as frictional forces between the end-effector and contact surface. We additionally propose novel extensions to the Dynamic Movement Primitive framework that encourage robust transition from free-space motion to in-contact motion in spite of environment uncertainty. We incorporate force feedback and a dynamically shifting goal to reduce forces applied to the environment and retain stable contact while enabling force control. Our methods exhibit low impact forces on contact and low steady-state tracking error.
翻译:我们提出了一种从演示中学习混合力量/位置控制的新方法。我们学习了一种与理想力量方向相一致的动态制约框架,使用了笛卡尔动力运动原始动力。与使用固定约束框架的方法相反,我们的方法很容易适应任务随时间变化而变化的任务限制。我们在任何特定时间只启用一种程度的武力控制自由,确保运动总是有可能与所需力量的方向交错。由于我们利用所显示的力量来学习约束框架,我们有能力补偿那些没有通过只从显示的运动中学习的方法探测到的力量,例如终端效应和接触表面之间的摩擦力量。我们又提议对动态动力运动原始框架进行新的扩展,鼓励在环境不确定的情况下从自由空间运动向动态运动顺利过渡,在任何时间都采用动态变化的目标,以减少对环境应用的力量,并在使部队能够控制的同时保持稳定的接触。我们的方法显示接触和低稳定状态跟踪错误的影响力量。