This short paper highlights the growing importance of information retrieval (IR) engines in the scientific community, addressing the inefficiency of traditional keyword-based search engines due to the rising volume of publications. The proposed solution involves structured records, underpinning advanced information technology (IT) tools, including visualization dashboards, to revolutionize how researchers access and filter articles, replacing the traditional text-heavy approach. This vision is exemplified through a proof of concept centered on the ``reproductive number estimate of infectious diseases'' research theme, using a fine-tuned large language model (LLM) to automate the creation of structured records to populate a backend database that now goes beyond keywords. The result is a next-generation IR method accessible at https://orkg.org/usecases/r0-estimates.
翻译:暂无翻译