Recent works have shown that expansion of pseudorandom sets is of great importance. However, all current works on pseudorandom sets are limited only to product (or approximate product) spaces, where Fourier Analysis methods could be applied. In this work we ask the natural question whether pseudorandom sets are relevant in domains where Fourier Analysis methods cannot be applied, e.g., one-sided local spectral expanders. We take the first step in the path of answering this question. We put forward a new definition for pseudorandom sets, which we call ``double balanced sets''. We demonstrate the strength of our new definition by showing that small double balanced sets in one-sided local spectral expanders have very strong expansion properties, such as unique-neighbor-like expansion. We further show that cohomologies in cosystolic expanders are double balanced, and use the newly derived strong expansion properties of double balanced sets in order to obtain an exponential improvement over the current state of the art lower bound on their minimal distance.
翻译:最近的作品表明,假冒随机机组的扩展非常重要。 然而, 伪冒机组目前的所有工程都仅限于产品( 或近似产品) 空间, 从而可以应用 Fourier 分析方法 。 在这项工作中, 我们询问假冒机组是否与Fourier 分析方法无法应用的领域相关, 比如, 片面的本地光谱扩展器。 我们在回答这个问题的道路上迈出第一步。 我们提出了假冒机组的新定义, 我们称之为“ 双平衡机组 ” 。 我们展示了我们新定义的强度, 展示了单面本地光谱扩展器中小型双平衡机组具有非常强的扩展特性, 比如独邻式扩张。 我们还进一步显示, 共声波型扩展器中的共振功能是双平衡的, 并使用新获得的双平衡机组的强扩展特性, 以获得比其最小距离的艺术更低的当前状态的指数性改进 。