The double Fourier sphere (DFS) method uses a clever trick to transform a function defined on the unit sphere to the torus and subsequently approximate it by a Fourier series, which can be evaluated efficiently via fast Fourier transforms. Similar approaches have emerged for approximation problems on the disk, the ball, and the cylinder. In this paper, we introduce a generalized DFS method applicable to various manifolds, including all the above-mentioned cases and many more, such as the rotation group. This approach consists in transforming a function defined on a manifold to the torus of the same dimension. We show that the Fourier series of the transformed function can be transferred back to the manifold, where it converges uniformly to the original function. In particular, we obtain analytic convergence rates in case of H\"older-continuous functions on the manifold.
翻译:双Fourier 球(DFS) 方法使用一个聪明的把戏,将单位球上定义的函数转换成横形体,然后以一个Fourier序列相近,通过快速的Fourier变换,可以对它进行高效评估。磁盘、球和圆柱上的近似问题也出现了类似的做法。在本文中,我们引入了一种通用的外勤部方法,该方法适用于各种方块,包括上述所有案例,以及许多其他,例如轮用组。这种方法包括将一个柱子上定义的函数转换成同一维度的横形体。我们表明,变形函数中的Fourier序列可以转回元体,使其与原始函数一致。特别是,我们获得了在多元体上的H\"older-continy 函数的解析汇率。