Ordinal regression is aimed at predicting an ordinal class label. In this paper, we consider its semi-supervised formulation, in which we have unlabeled data along with ordinal-labeled data to train an ordinal regressor. There are several metrics to evaluate the performance of ordinal regression, such as the mean absolute error, mean zero-one error, and mean squared error. However, the existing studies do not take the evaluation metric into account, have a restriction on the model choice, and have no theoretical guarantee. To overcome these problems, we propose a novel generic framework for semi-supervised ordinal regression based on the empirical risk minimization principle that is applicable to optimizing all of the metrics mentioned above. Besides, our framework has flexible choices of models, surrogate losses, and optimization algorithms without the common geometric assumption on unlabeled data such as the cluster assumption or manifold assumption. We further provide an estimation error bound to show that our risk estimator is consistent. Finally, we conduct experiments to show the usefulness of our framework.
翻译:常规回归的目的是预测一个正态级标签。 在本文中, 我们考虑它的半监督性配方, 其中包括没有标签的数据以及用于训练正态回归器的标标标数据。 有几种衡量标准来评估正态回归的性能, 如平均绝对误差、 平均零差、 平均平方差。 但是, 现有的研究没有考虑到评价指标, 对模型选择有限制, 没有理论保证。 为了克服这些问题, 我们根据适用于优化上述所有度量度的实验性风险最小化原则, 提出了一个新型的半监督性或异常回归通用框架。 此外, 我们的框架有灵活的模型选择、 超导损耗和优化算法, 而没有基于未标数据的共同几何假设, 如集假设或多重假设。 我们还提供了一个估计错误, 以显示我们的风险估计符是一致的。 最后, 我们进行实验以显示我们框架的有用性。