The availability of massive datasets allows for conducting extreme value statistics using more observations drawn from the tail of an underlying distribution. When large datasests are distributedly stored and cannot be combined into one oracle sample, a divide-and-conquer algorithm is often invoked to construct a distributed estimator. If the distributed estimator possesses the same asymptotic behavior as the hypothetical oracle estimator based on the oracle sample, then it is regarded as satisfying the oracle property. In this paper, we introduce a set of tools regarding the asymptotic behavior of the tail empirical and quantile processes under the distributed inference setup. Using these tools, one can easily establish the oracle property for most extreme value estimators based on the peak-over-threshold approach. We provide various examples to show the usefulness of the tools.
翻译:大规模数据集的可用性使得能够使用从底部分布的尾部得出的更多观测进行极端价值统计。 当大型数据中的数据被分布存储,无法合并成一个孔径样本时, 往往会引用一个分隔和征服算法来构建分布的估量器。 如果分布式估量器拥有与基于甲骨文样本的假设压轴估量器相同的亚线性行为, 那么它就会被视为满足甲骨文属性。 在本文中, 我们引入了一套工具, 在分布式推断设置下, 有关尾部实验和定量过程的无干扰行为。 使用这些工具, 人们可以很容易地为基于峰值估计法的最极端值估量者建立星性。 我们提供各种例子来展示工具的实用性 。