In this paper, we carry out a unified study for $L_1$ over $L_2$ sparsity promoting models, which are widely used in the regime of coherent dictionaries for recovering sparse nonnegative/arbitrary signal. First, we provide the exact recovery condition on both the constrained and the unconstrained models for a broad set of signals. Next, we prove the solution existence of these $L_{1}/L_{2}$ models under the assumption that the null space of the measurement matrix satisfies the $s$-spherical section property. Then by deriving an analytical solution for the proximal operator of the $L_{1} / L_{2}$ with nonnegative constraint, we develop a new alternating direction method of multipliers based method (ADMM$_p^+$) to solve the unconstrained model. We establish its global convergence to a d-stationary solution (sharpest stationary) and its local linear convergence under certain conditions. Numerical simulations on two specific applications confirm the superior of ADMM$_p^+$ over the state-of-the-art methods in sparse recovery. ADMM$_p^+$ reduces computational time by about $95\%\sim99\%$ while achieving a much higher accuracy compared to commonly used scaled gradient projection method for wavelength misalignment problem.
翻译:在本文中,我们为超过1美元L_1美元/L_2美元的宽度促进模型进行了一项统一的研究,这些模型被广泛用于恢复稀少的非消极/任意信号的统一字典制度。首先,我们为一套广泛的信号提供了限制和不受限制的模型的确切恢复条件。接着,我们证明这些模型的解决方案存在,前提是测量矩阵的空格符合美元部分特性。然后,通过为美元/L_1美元/L%2}的准字典操作者找到一种分析解决方案,在非消极限制下,我们开发了一种基于多种方法的交替方向方法(ADMM$_p_p%美元),以解决不受限制的模式。我们证明这些模型在一定条件下与d-静止解决方案(静态极速)及其本地线性趋近。对两种具体应用的模拟证实,对于美元超过美元(美元)的状态-价/L%/L#2}的准操作者,在非消极限制下,我们开发了一种新的基于不受限制的方法(ADMM$_p%美元)的倍变换方向方法,以解决未受限制的模式模式。我们建立与在普通的平调的平平平平平平平平平的平的平平平的平调方法下,同时,在平平平平平平调平平平平平平平平平平平平平平平平平平平平平调平平的平调的平的平的平的平的平的平的平的平的平的平的平调的平调的平的平的平的平的平的平的平的平。