We reexamine the classical linear regression model when the model is subject to two types of uncertainty: (i) some of covariates are either missing or completely inaccessible, and (ii) the variance of the measurement error is undetermined and changing according to a mechanism unknown to the statistician. By following the recent theory of sublinear expectation, we propose to characterize such mean and variance uncertainty in the response variable by two specific nonlinear random variables, which encompass an infinite family of probability distributions for the response variable in the sense of (linear) classical probability theory. The approach enables a family of estimators under various loss functions for the regression parameter and the parameters related to model uncertainty. The consistency of the estimators is established under mild conditions on the data generation process. Three applications are introduced to assess the quality of the approach including a forecasting model for the S\&P Index.
翻译:当模型受到两种不确定因素的影响时,我们重新审查古典线性回归模型:(一) 一些共变体缺失或完全无法进入,以及(二) 测量误差的差别没有确定,根据统计员所不知道的机制变化。我们建议根据最近的亚线性预期理论,用两个具体的非线性随机变量来描述响应变量中的这种平均值和差异不确定性,其中包括一个无限的多倍的概率分布组合,从(线性)古典概率理论的意义上来说,反应变量的概率分布。这种方法使各种损失函数下的测算员能够组成回归参数和与模型不确定性有关的参数的系列。估算器的一致性是在数据生成过程的温和条件下建立的。我们采用了三种应用来评估方法的质量,包括S ⁇ P指数的预测模型。