This paper investigates Graph Neural Networks (GNNs) application for self-supervised network intrusion and anomaly detection. GNNs are a deep learning approach for graph-based data that incorporate graph structures into learning to generalise graph representations and output embeddings. As network flows are naturally graph-based, GNNs are a suitable fit for analysing and learning network behaviour. The majority of current implementations of GNN-based Network Intrusion Detection Systems (NIDSs) rely heavily on labelled network traffic which can not only restrict the amount and structure of input traffic, but also the NIDSs potential to adapt to unseen attacks. To overcome these restrictions, we present Anomal-E, a GNN approach to intrusion and anomaly detection that leverages edge features and graph topological structure in a self-supervised process. This approach is, to the best our knowledge, the first successful and practical approach to network intrusion detection that utilises network flows in a self-supervised, edge leveraging GNN. Experimental results on two modern benchmark NIDS datasets not only clearly display the improvement of using Anomal-E embeddings rather than raw features, but also the potential Anomal-E has for detection on wild network traffic.
翻译:本文调查了用于自我监督网络入侵和异常探测的图形神经网络(GNN)应用程序。 GNN是一个基于图形的数据的深层次学习方法,它将图形结构纳入到学习中,用于泛泛的图形示意图和输出嵌入中。由于网络流动自然以图形为基础,GNN是适合分析和学习网络行为的。目前实施基于GNN的网络入侵探测系统(NIDS)的多数做法严重依赖贴有标签的网络流量,这种流量不仅限制输入流量的数量和结构,而且限制NIDS适应隐蔽攻击的可能性。为了克服这些限制,我们介绍了Anomal-E,即GNNN对入侵和异常探测的一种方法,在自我监督的过程中利用边缘特征和图示表示结构进行分析和学习网络行为。根据我们的最佳知识,这是利用网络流动在自我监督、边缘利用GNNNN的网络的首个成功和实用方法。在两个现代基准NIDS数据集上进行的实验结果不仅明确展示了使用Anom-E交通探测网络的改进情况,而不是原始特征。