Through sequential construction of posteriors on observing data online, Bayes' theorem provides a natural framework for continual learning. We develop Variational Auto-Regressive Gaussian Processes (VAR-GPs), a principled posterior updating mechanism to solve sequential tasks in continual learning. By relying on sparse inducing point approximations for scalable posteriors, we propose a novel auto-regressive variational distribution which reveals two fruitful connections to existing results in Bayesian inference, expectation propagation and orthogonal inducing points. Mean predictive entropy estimates show VAR-GPs prevent catastrophic forgetting, which is empirically supported by strong performance on modern continual learning benchmarks against competitive baselines. A thorough ablation study demonstrates the efficacy of our modeling choices.


翻译:通过在在线观测数据上相继建造后台,拜斯的理论为持续学习提供了一个自然框架。我们开发了变化式自动递减高斯进程(VAR-GPs),这是一个原则性的后台更新机制,用于解决连续学习中的相继任务。通过依靠稀疏的引导点近似值为可伸缩的后台,我们提出了一个新型的自动递减变异分布法,它揭示了与巴伊西亚推论、预期传播和正方位引导点的现有结果的两条富有成果的连接。平均预测性昆虫估计显示VAR-GPs防止灾难性的遗忘,这在经验上得到了基于竞争性基线的现代持续学习基准的有力表现的支持。一项彻底的通货膨胀研究展示了我们模型选择的功效。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
32+阅读 · 2021年7月15日
因果关联学习,Causal Relational Learning
专知会员服务
183+阅读 · 2020年4月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Linear Constraints Learning for Spiking Neurons
Arxiv
0+阅读 · 2021年8月11日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员