Bent-negabent functions have many important properties for their application in cryptography since they have the flat absolute spectrum under the both Walsh-Hadamard transform and nega-Hadamard transform. In this paper, we present four new systematic constructions of bent-negabent functions on $4k, 8k, 4k+2$ and $8k+2$ variables, respectively, by modifying the truth tables of two classes of quadratic bent-negabent functions with simple form. The algebraic normal forms and duals of these constructed functions are also determined. We further identify necessary and sufficient conditions for those bent-negabent functions which have the maximum algebraic degree. At last, by modifying the truth tables of a class of quadratic 2-rotation symmetric bent-negabent functions, we present a construction of 2-rotation symmetric bent-negabent functions with any possible algebraic degrees. Considering that there are probably no bent-negabent functions in the rotation symmetric class, it is the first significant attempt to construct bent-negabent functions in the generalized rotation symmetric class.
翻译:本文件中,我们分别用4k、8k、4k+2美元和8k+2美元等变量介绍了四种新的弯曲内分函数的系统构造,这些变量以简单形式修改了两种四面弯曲内分函数的真象表。这些构造函数的代数正态形式和双倍功能也得到了确定。我们进一步确定了具有最大代数度的弯曲内分函数的必要和充分条件。最后,通过修改一个四面形2-正弦值双向正弦值双向内分位函数的真象表,我们提出了一种以任何可能的代数为形式的双向对齐弯曲内分位函数的构造。考虑到这些构造函数的代数正常形式和双倍性功能可能没有在旋转式正比值类中存在。我们进一步确定了具有最大代数度的弯曲内分函数的必要和充分条件。最后,通过修改一个四面形2-正弦正弦值双向倾角函数的真象表,我们提出了一种以任何可能的代数度组成的双向正弦正弦函数的构造。