Symmetric quantum signal processing provides a parameterized representation of a real polynomial, which can be translated into an efficient quantum circuit for performing a wide range of computational tasks on quantum computers. For a given polynomial $f$, the parameters (called phase factors) can be obtained by solving an optimization problem. However, the cost function is non-convex, and has a very complex energy landscape with numerous global and local minima. It is therefore surprising that the solution can be robustly obtained in practice, starting from a fixed initial guess $\Phi^0$ that contains no information of the input polynomial. To investigate this phenomenon, we first explicitly characterize all the global minima of the cost function. We then prove that one particular global minimum (called the maximal solution) belongs to a neighborhood of $\Phi^0$, on which the cost function is strongly convex under the condition ${\left\lVert f\right\rVert}_{\infty}=\mathcal{O}(d^{-1})$ with $d=\mathrm{deg}(f)$. Our result provides a partial explanation of the aforementioned success of optimization algorithms.
翻译:对称量子信号处理提供了一个真正的多元度信号的参数化表示, 它可以转换成一个高效的量子电路, 用于在量子计算机上完成一系列广泛的计算任务。 对于一个特定的多元值美元, 参数( 所谓的阶段因子) 可以通过解决优化问题获得 。 然而, 成本函数是非cavex, 并且具有一个非常复杂的能源景观, 具有众多的全球和本地微型 。 因此, 令人惊讶的是, 解决方案能够从一个固定的初始猜测 $\ Phi ⁇ 0 转换成高效的量子电路。 为了调查这一现象, 我们首先明确描述成本函数的所有全球微型值 。 我们然后证明, 一个特定的全球最低值( 称为最大因子因子) 属于$\ Phi% 0 的附近, 其成本函数在 $left\ lVert f\r\rVert\\\ int\\ int\\\ int\\\ mathcal{ O} ( d ⁇ -1} ( d ⁇ -1} $ 包含输入多输入多元性信息的信息 。 。 我们提供了上述最优化的部分结果 。