Use of polynomial indicator functions to enumerate fractional factorial designs with given properties is first introduced by Fontana, Pistone and Rogantin (2000) for two-level factors, and generalized by Aoki (2019) for multi-level factors. In this paper, we apply this theory to enumerate cross-array designs. For the experiments of several control factors and noise factors, use of the cross-array designs with direct product structure is widespread as an effective robust strategy in Taguchi method. In this paper, we relax this direct product structure to reduce the size of the designs. We obtain 24-runs cross-array designs without direct product structure with some desirable properties for 6 control factors and 3 noise factors, each with two-levels, instead of 32-runs design that is widely used.
翻译:使用多元指标函数来列举特定特性的分因子设计,首先由Fontana、Pizone和Rogantin(2000年)对两个层面因素采用,然后由Aoki(2019年)对多个层面因素采用。在本文件中,我们运用这一理论来罗列跨组设计;在几个控制因素和噪音因素的实验中,直接产品结构的跨组设计在Taguchi方法中被广泛用作有效的有力战略。在本文中,我们放松了这一直接产品结构,以缩小设计的规模。我们获得了没有直接产品结构的24个跨组设计,6个控制因素和3个噪音因素都具有一些可取的属性,每个因素有2个层面,而不是广泛使用的32个运行的设计。