Wind energy resource assessment typically requires numerical models, but such models are too computationally intensive to consider multi-year timescales. Increasingly, unsupervised machine learning techniques are used to identify a small number of representative weather patterns to simulate long-term behaviour. Here we develop a novel wind energy workflow that for the first time combines weather patterns derived from unsupervised clustering techniques with numerical weather prediction models (here WRF) to obtain efficient and accurate long-term predictions of power and downstream wakes from an entire wind farm. We use ERA5 reanalysis data clustering not only on low altitude pressure but also, for the first time, on the more relevant variable of wind velocity. We also compare the use of large-scale and local-scale domains for clustering. A WRF simulation is run at each of the cluster centres and the results are aggregated using a novel post-processing technique. By applying our workflow to two different regions, we show that our long-term predictions agree with those from a year of WRF simulations but require less than 2% of the computational time. The most accurate results are obtained when clustering on wind velocity. Moreover, clustering over the Europe-wide domain is sufficient for predicting wind farm power output, but downstream wake predictions benefit from the use of smaller domains. Finally, we show that these downstream wakes can affect the local weather patterns. Our approach facilitates multi-year predictions of power output and downstream farm wakes, by providing a fast, accurate and flexible methodology that is applicable to any global region. Moreover, these accurate long-term predictions of downstream wakes provide the first tool to help mitigate the effects of wind energy loss downstream of wind farms, since they can be used to determine optimum wind farm locations.


翻译:风能资源评估通常需要数字模型,但此类模型在计算上过于密集,无法考虑多年时间尺度。越来越多的人使用不受监督的机器学习技术来识别少量具有代表性的天气模式,以模拟长期行为。在这里,我们开发了新型风能工作流程,首次将来自不受监督的集群技术的天气模式与数字天气预测模型(这里是WRF)结合起来,以获得高效和准确的下游电力和整个风场的下游休克预测。我们不仅利用ERA5重新分析数据集成低高度压力,而且第一次还利用更贴切的风速变异。我们还比较了大规模和地方规模的天气模式,以模拟方式来模拟长期行为。一个WRF模拟首次将来自未经监督的集群组合技术与数字天气预测方法结合起来,通过对两个不同的区域应用我们的工作流程,我们表明我们的长期预测与WRFS模拟的一年后期测算方法一致,但需要低于任何计算时间的2%。在风速上进行最准确的预测时会获得结果。此外,在风速上进行最精确的预测时,从风向下游变换到风速度时,最后,我们利用了这些系统,从而可以充分预测,从而显示整个大陆的能源流流流流流流流流数据效益,从而显示我们使用。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
68+阅读 · 2022年9月7日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员