The objective of this paper is to assess the performances of dimensionality reduction techniques to establish a link between cryptocurrencies. We have focused our analysis on the two most traded cryptocurrencies: Bitcoin and Ethereum. To perform our analysis, we took log returns and added some covariates to build our data set. We first introduced the pearson correlation coefficient in order to have a preliminary assessment of the link between Bitcoin and Ethereum. We then reduced the dimension of our data set using canonical correlation analysis and principal component analysis. After performing an analysis of the links between Bitcoin and Ethereum with both statistical techniques, we measured their performance on forecasting Ethereum returns with Bitcoin s features.
翻译:本文的目的是评估维度减少技术的性能,以便在加密之间建立联系。 我们的分析集中于两种交易最多的加密:比特币和埃特伦。 为了进行分析,我们做了日志返回,并添加了一些共变数据来构建我们的数据集。 我们首先引入了皮尔逊相关系数,以便对比特币和埃特伦之间的联系进行初步评估。 然后,我们利用运河相关性分析和主要组成部分分析,减少了我们数据集的尺寸。在对比特币和埃特伦之间的联系与这两种统计技术进行分析之后,我们用比特币的特征来测量它们预测埃特伦回报的性能。