We derive a new variational formula for the R\'enyi family of divergences, $R_\alpha(Q\|P)$, between probability measures $Q$ and $P$. Our result generalizes the classical Donsker-Varadhan variational formula for the Kullback-Leibler divergence. We further show that this R\'enyi variational formula holds over a range of function spaces; this leads to a formula for the optimizer under very weak assumptions and is also key in our development of a consistency theory for R\'enyi divergence estimators. By applying this theory to neural-network estimators, we show that if a neural network family satisfies one of several strengthened versions of the universal approximation property then the corresponding R\'enyi divergence estimator is consistent. In contrast to density-estimator based methods, our estimators involve only expectations under $Q$ and $P$ and hence are more effective in high dimensional systems. We illustrate this via several numerical examples of neural network estimation in systems of up to 5000 dimensions.
翻译:我们得出了R\'enyi差异大家庭的一个新的变式公式,即R ⁇ alpha( ⁇ P)美元,概率计量$Q美元和$P美元。我们得出的结果将古典的Donsker-Varadhan变式公式概括为Kullback-Leiber差异。我们进一步表明,R\'enyi变式公式维持在一系列功能空间;这导致在非常薄弱的假设下形成一个优化者公式,也是我们为R\'enyi差异估计员制定一致理论的关键。我们通过将这一理论应用于神经网络估计师,我们表明如果神经网络组满足多个强化版本的通用近距离属性之一,那么相应的R\'enyi差异估计仪是一致的。与基于密度估计的方法相比,我们的估计器只涉及在Q$和$P美元以下的预期,因此在高度系统中更为有效。我们通过5000维维维的系统神经网络估计数字实例来说明这一点。