For a multivariate normal distribution, the sparsity of the covariance and precision matrices encodes complete information about independence and conditional independence properties. For general distributions, the covariance and precision matrices reveal correlations and so-called partial correlations between variables, but these do not, in general, have any correspondence with respect to independence properties. In this paper, we prove that, for a certain class of non-Gaussian distributions, these correspondences still hold, exactly for the covariance and approximately for the precision. The distributions -- sometimes referred to as "nonparanormal" -- are given by diagonal transformations of multivariate normal random variables. We provide several analytic and numerical examples illustrating these results.


翻译:对于多变正常分布, 共变和精密矩阵的宽度将关于独立和有条件独立属性的完整信息编码成。 对于一般分布, 共变和精确矩阵显示变量之间的相互关系和所谓的部分关联性, 但总的来说, 这些变量在独立属性方面没有任何对应关系。 在本文中, 我们证明, 对于某类非高加索分布而言, 这些通信仍然有效, 完全适合共变, 大致也符合精确性 。 分布( 有时被称为“ 非异常性 ” ) 是通过多变量普通随机变量的对角转换提供的。 我们提供了几个分析和数字例子来说明这些结果 。

0
下载
关闭预览

相关内容

【AAAI2021】记忆门控循环网络
专知会员服务
48+阅读 · 2020年12月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年4月12日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年4月12日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员