In a widely studied class of multi-parametric optimization problems, the objective value of each solution is an affine function of real-valued parameters. For many important multi-parametric optimization problems, an optimal solutions set with minimum cardinality can contain super-polynomially many solutions. Consequently, any exact algorithm for such problems must output a super-polynomial number of solutions. We propose an approximation algorithm that is applicable to a general class of multi-parametric optimization problems and outputs a number of solutions that is bounded polynomially in the instance size and the inverse of the approximation guarantee. This method lifts approximation algorithms for non-parametric optimization problems to their parametric formulations, providing an approximation guarantee that is arbitrarily close to the approximation guarantee for the non-parametric problem. If the non-parametric problem can be solved exactly in polynomial time or if an FPTAS is available, the method yields an FPTAS. We discuss implications to important multi-parametric combinatorial optimizations problems. Remarkably, we obtain a $(\frac{3}{2} + \varepsilon)$-approximation algorithm for the multi-parametric metric travelling salesman problem, whereas the non-parametric version is known to be APX-complete. Furthermore, we show that the cardinality of a minimal size approximation set is in general not $\ell$-approximable for any natural number $\ell$.
翻译:在经过广泛研究的多参数优化问题类别中,每种解决方案的客观价值是实际价值参数的近似函数。对于许多重要的多参数优化问题,一个最优的解决方案,其最基本基点可以包含超极性解决方案。因此,任何这类问题的确切算法都必须产生超极性数的解决方案。我们建议一种适用于多参数优化问题和产出等一般类别的一种近似算法,在实例大小和近似保证的反面中,这些解决方案是相互交错的。对于非对称优化问题,这一方法的近似算法可以与其准度配方相匹配,提供一种与非对称问题近的近似保证任意接近的解决方案。如果非对称问题能够在多元时间或有FPTAS,该方法可以产生一种FPTAS。我们讨论了一些重要的多参数组合优化问题的含义。值得注意的是,我们获得了用于非对等值优化的美方美元平价优化的近似值算法,而对于我们所了解的IM数的IMexal-alalalalalalal ex ex ex eximalalalalalalalalal-ex ex ex ex ex ex exilaltiquestal ex ex ex exilmalmalation a wequt ex ex ex exxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx。