Consider the following communication scenario. An encoder observes a stochastic process and causally decides when and what to transmit about it, under a constraint on the expected number of bits transmitted per second. A decoder uses the received codewords to causally estimate the process in real time. The encoder and the decoder are synchronized in time. For a class of continuous Markov processes satisfying regularity conditions, we find the optimal encoding and decoding policies that minimize the end-to-end estimation mean-square error under the rate constraint. We show that the optimal encoding policy transmits a $1$-bit codeword once the process innovation passes one of two thresholds. The optimal decoder noiselessly recovers the last sample from the 1-bit codewords and codeword-generating time stamps, and uses it to decide the running estimate of the current process, until the next codeword arrives. In particular, we show the optimal causal code for the Ornstein-Uhlenbeck process and calculate its distortion-rate function. Furthermore, we show that the optimal causal code also minimizes the mean-square cost of a continuous-time control system driven by a continuous Markov process and controlled by an additive control signal.
翻译:考虑以下通信情景。 编码器观察一个随机过程, 并在每秒传输的比特数量限制下, 以因果方式决定它的时间和传输方式。 编码器使用收到的编码词实时进行因果估计过程。 编码器和编码器在时间上同步。 对于符合常规条件的连续的马尔科夫进程类别, 我们发现最佳编码和解码政策, 在利率限制下最大限度地减少端到端估计平均值方差错。 我们显示, 最佳编码政策在创新过程通过两个阈值之一时会传送一美元比特的编码字。 最佳解码器噪声会从一比特的编码字码和代码生成时间标记中恢复最后的样本, 并用它来决定当前进程的运行估计数, 直到下一个代码到达。 特别是, 我们为 Ornstein- Uhlenbeck 进程显示最佳因果代码, 并计算其扭曲率函数。 此外, 我们显示, 最佳因果编码也会通过持续时间控制, 由持续控制 马克 和 控制 系统 持续 驱动 的 恒定控制 的 的 标记 成本 。