We propose a globally convergent multilevel training method for deep residual networks (ResNets). The devised method can be seen as a novel variant of the recursive multilevel trust-region (RMTR) method, which operates in hybrid (stochastic-deterministic) settings by adaptively adjusting mini-batch sizes during the training. The multilevel hierarchy and the transfer operators are constructed by exploiting a dynamical system's viewpoint, which interprets forward propagation through the ResNet as a forward Euler discretization of an initial value problem. In contrast to traditional training approaches, our novel RMTR method also incorporates curvature information on all levels of the multilevel hierarchy by means of the limited-memory SR1 method. The overall performance and the convergence properties of our multilevel training method are numerically investigated using examples from the field of classification and regression.
翻译:我们为深残余网络建议了一个全球趋同的多层次培训方法(ResNets ) 。 设计的方法可以被视为循环多层次信任区域(RMTR)方法的新型变体,该方法在培训期间通过适应性调整微型批量大小在混合(随机-确定性)环境中运作。多层次和转移操作员是通过利用动态系统的观点构建的,这种观点将ResNet的前沿传播解释为初始价值问题的前向分解。与传统的培训方法不同,我们新的RMTR方法还采用有限的SR1模式,纳入了多层次等级各级结构的曲线信息。我们多层次培训方法的总体绩效和趋同性,通过分类和回归领域的实例进行了数字调查。