We present an optimization-based framework for multicopter trajectory planning subject to geometrical spatial constraints and user-defined dynamic constraints. The basis of the framework is a novel trajectory representation built upon our novel optimality conditions for unconstrained control effort minimization. We design linear-complexity operations on this representation to conduct spatial-temporal deformation under various planning requirements. Smooth maps are utilized to exactly eliminate geometrical constraints in a lightweight fashion. A wide range of state-input constraints are supported by the decoupling of dense constraint evaluation from sparse parameterization, and backward differentiation of flatness map. As a result, the proposed framework transforms a generally constrained multicopter planning problem into an unconstrained optimization that can be solved reliably and efficiently. Our framework bridges the gaps among solution quality, planning frequency and constraint fidelity for a multicopter with limited resources and maneuvering capability. Its generality and robustness are both demonstrated by applications and experiments for different tasks. Extensive simulations and benchmarks are also conducted to show its capability of generating high-quality solutions while retaining the computation speed against other specialized methods by orders of magnitudes. Details and source code of our framework will be freely available at: http://zju-fast.com/gcopter.


翻译:该框架的基础是一种新的轨迹代表,它基于我们对不受限制的控制努力的新的最佳条件,以尽量减少不受限制的控制努力; 我们设计了关于这一代表的线性复杂操作,以便根据各种规划要求进行空间-时态变形; 平滑的地图用于以轻量度的方式完全消除几何限制; 大量州产数据制约的制约得到大量评估与分散参数化和平板图后退差异的分离的支持; 因此,拟议的框架将普遍受限制的多试版规划问题转变为可以可靠和高效解决的不受限制的优化; 我们的框架将解决方案质量、规划频率和约束性之间的缺口缩小到资源有限和机动能力多调的多调和性; 其普遍性和稳健性通过应用和实验不同任务得到证明。 还进行了广泛的模拟和基准,以显示其生成高质量解决方案的能力,同时保持与其他专门方法的计算速度,以数量顺序保持。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2021年8月20日
ICML 2021论文收录
专知会员服务
123+阅读 · 2021年5月8日
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
78+阅读 · 2021年1月30日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
专知会员服务
61+阅读 · 2020年3月19日
专知会员服务
162+阅读 · 2020年1月16日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月4日
Arxiv
6+阅读 · 2021年6月24日
VIP会员
相关VIP内容
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员