In this article, we introduce a new mode for training Generative Adversarial Networks (GANs). Rather than minimizing the distance of evidence distribution $\tilde{p}(x)$ and the generative distribution $q(x)$, we minimize the distance of $\tilde{p}(x_r)q(x_f)$ and $\tilde{p}(x_f)q(x_r)$. This adversarial pattern can be interpreted as a Turing test in GANs. It allows us to use information of real samples during training generator and accelerates the whole training procedure. We even find that just proportionally increasing the size of discriminator and generator, it succeeds on 256x256 resolution without adjusting hyperparameters carefully.
翻译:在此篇文章中, 我们引入了一种新的培训生成反转网络模式 。 这种对抗模式可以被解释为 GAN 中的图灵测试 。 它允许我们在培训生成过程中使用真实样本的信息, 并加快整个培训程序。 我们甚至发现, 仅仅按比例增加歧视器和生成器的大小, 它在256x256 分辨率上成功而不小心调整超参数 。