Mutual localization plays a crucial role in multi-robot cooperation. CREPES, a novel system that focuses on six degrees of freedom (DOF) relative pose estimation for multi-robot systems, is proposed in this paper. CREPES has a compact hardware design using active infrared (IR) LEDs, an IR fish-eye camera, an ultra-wideband (UWB) module and an inertial measurement unit (IMU). By leveraging IR light communication, the system solves data association between visual detection and UWB ranging. Ranging measurements from the UWB and directional information from the camera offer relative 3-DOF position estimation. Combining the mutual relative position with neighbors and the gravity constraints provided by IMUs, we can estimate the 6-DOF relative pose from a single frame of sensor measurements. In addition, we design an estimator based on the error-state Kalman filter (ESKF) to enhance system accuracy and robustness. When multiple neighbors are available, a Pose Graph Optimization (PGO) algorithm is applied to further improve system accuracy. We conduct enormous experiments to demonstrate CREPES' accuracy between robot pairs and a team of robots, as well as performance under challenging conditions.
翻译:CREPES: 协作式相对姿势估计系统
多机器人的相互定位对于协作至关重要。本文提出了一种新型系统 CREPES,专注于多机器人系统的六自由度相对姿态估计。CREPES 具有紧凑的硬件设计,采用了主动红外线(IR)LED、红外鱼眼摄像机、超宽带(UWB)模块和惯性测量单元(IMU)。通过利用IR光线通讯,该系统解决了视觉检测与UWB测距之间的数据关联问题。UWB的测距测量和摄像机的方向信息提供相对3-DOF的位置估计。将相对位置信息与邻居的位置信息以及IMU提供的重力约束相结合,可以从单帧传感器测量中估计6-DOF的相对姿态。此外,我们设计了一个基于误差状态卡尔曼滤波(ESKF)的估计器来增强系统的精度和鲁棒性。当有多个邻居机器人可用时,将应用姿态图优化(PGO)算法以进一步提高系统的精度。我们进行了大量的实验来证明CREPES在机器人对和一组机器人之间的精度以及在具有挑战性的工况下的性能。