Existing methods of explainable AI and interpretable ML cannot explain change in the values of an output variable for a statistical unit in terms of the change in the input values and the change in the "mechanism" (the function transforming input to output). We propose two methods based on counterfactuals for explaining unit-level changes at various input granularities using the concept of Shapley values from game theory. These methods satisfy two key axioms desirable for any unit-level change attribution method. Through simulations, we study the reliability and the scalability of the proposed methods. We get sensible results from a case study on identifying the drivers of the change in the earnings for individuals in the US.
翻译:现有可解释的AI和可解释的 ML 方法无法解释统计单位产出变量值的变化( 输入值的变化和“ 机械” ( 将输入转换为输出的功能) ) 。 我们建议了两种基于反事实的方法, 用于解释各种输入颗粒的单位级变化, 使用游戏理论中的“ 阴影值” 概念。 这些方法满足了任何单位级变化归属方法所需要的两个关键轴。 我们通过模拟, 研究拟议方法的可靠性和可缩放性。 我们从一项关于确定美国个人收入变化的驱动因素的案例研究中获得合理的结果 。