The retina is an essential component of the visual system, and maintaining eyesight depends on the timely and correct detection of disorders. This research specifically addresses the early-stage detection and severity classification of diabetic retinopathy (DR), a serious public health hazard. We compare the results of different deep learning models such as InceptionV3, DenseNet121 and other CNN based models by using different image filters, such as Gaussian, grayscale and Gabor. These models could detect subtle pathological alterations and use that information to estimate the risk of retinal illnesses. The objective is to improve the diagnostic processes for diabetic retinopathy, the primary cause of diabetes-related blindness, by utilizing deep learning models. A comparative analysis between Greyscale, Gaussian and Gabor filters has been provided after applying these filters on the retinal images. The Gaussian filter resulted to be the most promising filter giving the best accuracies for all the models. The best performing model was InceptionV3 which gave an accuracy of 96% on Gaussian images, therefore Gaussian filter emerged as our most promising filter.
翻译:暂无翻译